An efficient algorithm for solving general coupled matrix equations and its application
نویسندگان
چکیده
منابع مشابه
An accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations
In this paper, an accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations is proposed. The convergence analysis of the algorithm is investigated. We show that the proposed algorithm converges to the exact solution for any initial value under certain assumptions. Finally, some numerical examples are given to demons...
متن کاملA matrix LSQR algorithm for solving constrained linear operator equations
In this work, an iterative method based on a matrix form of LSQR algorithm is constructed for solving the linear operator equation $mathcal{A}(X)=B$ and the minimum Frobenius norm residual problem $||mathcal{A}(X)-B||_F$ where $Xin mathcal{S}:={Xin textsf{R}^{ntimes n}~|~X=mathcal{G}(X)}$, $mathcal{F}$ is the linear operator from $textsf{R}^{ntimes n}$ onto $textsf{R}^{rtimes s}$, $ma...
متن کاملA numerical algorithm for solving a class of matrix equations
In this paper, we present a numerical algorithm for solving matrix equations $(A otimes B)X = F$ by extending the well-known Gaussian elimination for $Ax = b$. The proposed algorithm has a high computational efficiency. Two numerical examples are provided to show the effectiveness of the proposed algorithm.
متن کاملAn Efficient Numerical Algorithm For Solving Linear Differential Equations of Arbitrary Order And Coefficients
Referring to one of the recent works of the authors, presented in~cite{differentialbpf}, for numerical solution of linear differential equations, an alternative scheme is proposed in this article to considerably improve the accuracy and efficiency. For this purpose, triangular functions as a set of orthogonal functions are used. By using a special representation of the vector forms of triangula...
متن کاملGradient based iterative algorithm for solving coupled matrix equations
This paper is concerned with iterative methods for solving a class of coupled matrix equations including the well-known coupled Markovian jump Lyapunov matrix equations as special cases. The proposed method is developed from an optimization point of view and contains the well-known Jacobi iteration, Gauss–Seidel iteration and some recently reported iterative algorithms by using the hierarchical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical and Computer Modelling
سال: 2010
ISSN: 0895-7177
DOI: 10.1016/j.mcm.2009.12.022